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An approach utilizing multiple scales and matched asymptotic expansions is devel- 
oped for the description of small perturbations at  large distances from a thin airfoil 
oscillating harmonically in a uniform supersonic flow. The problem of determining 
the unsteady perturbation potential is formulated in general, and an analytical 
solution is derived for an airfoil with parabolic or flat surfaces. The results describe 
the flow ahead of the region influenced by the trailing edge. The variation in the 
pressure jump across an attached leading-edge shock wave is also obtained. 

1. Introduction 
For steady supersonic flow past a thin airfoil, it is well known (Lighthill 1964; Van 

Dyke 1975) that the displacement of characteristics and shock waves from their 
linearized positions is no longer small in comparison with the chord length if the 
distance from the airfoil is sufficiently large. If now the airfoil undergoes simple 
harmonic oscillations of small amplitude, linear acoustics provides a correct first 
approximation (Garrick & Rubinow 1946; Van Dyke 1964) for the flow perturbations 
at  distances of the same order as the chord length. At large distances, however, the 
gradual distortion of the steady flow also influences the unsteady disturbances. 
Kurosaka (1977) studied these effects, with emphasis on high reduced frequencies 
and without explicit discussion of the decay of the unsteady pressure jump across 
a leading-edge shock wave. The purpose of this note is to complete the flow description 
in a systematic way for reduced frequencies of order one and to show how the pressure 
oscillations at  a leading-edge shock wave will decrease in strength a t  large distances. 

The problem formulation is given in $2 and the solution is carried out in $3. The 
method of solution is similar to the multiple-scales method used by Luke (1966) in 
a study of weakly nonlinear dispersive waves, also discussed by Kevorkian & Cole 
(1981). The present derivation differs in a number of details, as in the replacement 
of a periodicity requirement with a matching condition. An analytical solution is 
obtained for airfoils with parabolic or flat surfaces. The results describe the flow far 
from the airfoil and ahead of the region influenced by the trailing edge, except that 
a different solution is required close to a shock wave from the leading edge. A 
composite is easily formed, and remains correct near the shock wave all the way to 
the leading edge. The variation in the pressure jump along the shock wave is then 
considered in $4. 
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2. Formulation 
Rectangular coordinates x and y are measured along and normal to the undisturbed 

flow direction respectively, with the origin at  the steady-state position of the airfoil 
leading edge. The coordinates x and y, the time t ,  the velocity vector q and its 
magnitude q, the sound speed a, and the reduced frequency k are all non-dimensional, 
with the airfoil chord length and the undisturbed fluid velocity serving as the 
reference quantities. The pressure perturbation p is referred to twice the dynamic 
pressure in the undisturbed flow, y is the ratio of specific heats, M is the undisturbed 
value of the Mach number, and B2 = Mz - 1. 

For irrotational isentropic flow the velocity potential @ satisfies 

a2 divq = a(q 
where q = V @  and 

The pressure can be found from 

l + y W p  = (Ma)2Y/(Y-1). (3) 

A wedge-shaped leading edge will be assumed, so that the shock waves are attached. 
Since the shock waves are everywhere very weak, the largest terms in the solution 
can be obtained using (1)-(3). It is sufficient to consider the flow for y > 0. If the 
upper airfoil surface is defined by S(x, y, t )  = 0, the boundary condition requiring zero 
flow through the surface is 

at S = 0. For simple harmonic oscillations, the surface shape will be expressed in the 
form 

(5 )  

for 0 < x < 1, where 6 -4 s -4 1, so that the amplitudes of the unsteady perturbations 
are small in comparison with the corresponding steady-state changes. Solutions will 
be sought for the portion of the flow ahead of the region influenced by the trailing 
edge. 

The potential @ and pressure p have various asymptotic representations, corre- 
sponding to different limits. In general, @ and p can each be written as the sum of 
a steady-state part, a linearized time-dependent part, and terms of higher order: 

St+q*VS = 0,  (4) 

S(x, y, t )  = 0 = y - sf(x) - 6 eikth(x), 

@ = x+e$(z, ~ ; e ) + 6 e ~ ~ ( ~ - ~ * ~ / ~ * ) ~ ( z ,  y; k,e)+O(Sa),  

p = E ~ ( Z , ~ ; E ) + ~ ~ ~ ~ ( ~ - ~ * ~ ~ ~ * ) ~ ( X ,  y; k , e ) + O ( P ) ,  

(6) 

(7) 

where 3, 4, p and j5 are bounded as E +- 0 and possess different forms of expansion 
as s+O depending on the behaviour of x, y and k. 

For z, y fixed as e+O, the first approximation for 5 is the steady-state linear-theory 
solution 3 = -f(x-By)/B. But for ~y,x-By fixed as s+O the cumulative effect of 
the small error in the slopes of the linearized characteristics can no longer be 
neglected. Rewriting the differential equation for $ in terms of variables = x/B- y 
and y shows that in the first approximation a quantity X is constant along 
Characteristics, and the velocity and pressure perturbations are again given by the 
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linearized simple-wave solution but now with & = constant along the corrected 
characteristics : 

For x, y, k fixed as e+O, the equations defining 4 become 

where 

and the flow is undisturbed for z < 0. If the airfoil undergoes a rigid plunging and 
pitching oscillation, h(x) is linear in z. The solution to the linearized problem for 6, 
with the right-hand sides neglected in (10) and (ll),  is (Van Dyke 1954): 

((z - a)2 - Bzy2)t 

If $y + 00 with g/y + 0, (13) becomes, after integration by parts and expansion of the 
resulting Bessel function, 

The first approximation is proportional to V(O), and so represents waves originating 
from the leading edge. The asymptotic far-field solution must match with (14) and 
so also will contain only waves coming from the leading edge. 

It is convenient now to transform from coordinates z and y to coordinates 6 and 
y. For y+m and kJy+O, retaining the largest terms of the right-hand side of (10) 
is found to give 

where derivatives with respect to y are of higher order and have been neglected. Terms 
proportional to €6 would lead to a change in the wavenumber that remains of higher 
order when y = O(l/e),  and so also have been omitted. The characteristics of (15) are 
the lines X = constant, with slopes affected by the $g& term in the same manner 
as for steady flow, implying again a cumulative effect that cannot be neglected when 
y is large. This suggests a further transformation, from 6 and y to X and y. Equation 
(15) now becomes 

This equation is to be solved for X = O( 1) and y = O( l/e), with the requirement that 
the solution be consistent with (14) when 1 4 y 4 1/e. 
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3. Solution 
The form of the solution to (16) for large y is suggested by the form of (8) and (14). 

If z = O(1) and y = 0(1/~), the second term in the definition (8) of X is O(1) and the 
expansion (14) of the linearized solution varies rapidly because the argument of the 
cosine is O(e-4). Thus it is anticipated that 6 can be written in terms of X and a 'slow' 
variable 7 = ey as well as a 'fast ' variable 9 = e-@(X, 'I), where 8 is to be determined. 
This formulation in terms of multiple scales is similar to that given by Luke (1966) 
for an example illustrating propagation of nonlinear dispersive waves. In  accordance 
with this procedure X ,  1 and 9 are to be treated as independent variables and the 
differential equation (16) for 6 becomes 

where 'I = By, 9 = e-i@(X,'I), 

and G is defined bv 
1 k2W& 
2 B2 ' 

8 x 8 ,  G2(X, 7) = -- 

with 6,  found as a function of X and 7 from (8). 
An expansion of 6 is now assumed in the form 

6 = &,(x, 7, e) +d$,(x, 7, 9) + . . . . (20) 

The choice 6 = O(d) is made so that the difference between 6 and the solution (14) 
can be made arbitrarily small if e, 1 /y and 7 are sufficiently small. Since 6 and (14) 
do not possess limits separately, this 'matching ' represents a slight generalization 
of the matching of limit-process expansions. The second term in 6 must be O(d) 
because the terms on the right-hand side of (17) are of this order. 

Terms O(d) and O(d) in (17) give, f o r j  = 1 a n d j  = 2 respectively, 

6jee + Ga6j = dj 9 (21) 

where d, = 0 and d, depends on 6,. Since the differentiation with respect to 9 is carried 
out with X and 7 held fixed, G is treated as a constant for the integration of (21). 
The solution for 6, can be written as 

(22) 

and the functions G, x and A are to be determined. It is then found that d, contains 
terms proportional to cos (G9 - x) , sin (G9 - x) and 9 sin (G9 - x). If no secular terms 
are to be present in 62, i.e. if 6, is to remain finite as O+ a, the coefficients of these 
terms must all be zero. These three conditions provide differential equations for 

8, = A(& 'I) COS{G(X, 'I) d-X(X, 'I)}, 

G, x and A :  

A = O .  (y+  1)  ikMy'(X) 8, 
B4 @xA,+@,AX+ 

From (23), G and x are constant along characteristics dX/dq = 8,/9,. As q + O ,  
c8-x must match with the argument of the cosine in the solution (14) for large [y; 
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it follows that x - ~ I Z  and Ge - (kM/Ba)  (2BX7)t as 7+0. Combining this expression 
for Q8 with the definition (19) of G and substituting QW, 8, - constant as 7 + O  in 
the differential equation for Q leads to 

Solving then yields 8 N (const.) (X7)i as 7 + O  and so Q - constant. In (19) a conatant 
factor in Q was left arbitrary (if G is multiplied by C,  8 is divided by C), and so the 
constant value of Q as q + O  is arbitrary. We will choose Q - kM/Ba,  so that 

8 N (2BX7)t, (26)  

as 7+0. The slopes of the characteristics become dX/dq - X / 7 ,  and so as q + O  the 
characteristics are straight lines through the origin in the (X, q)-plane. The constant 
values of Q and x provide initial conditions for (23), and we can conclude that and 
x are constant everywhere. Equation (19) now becomes 

This differential equation for the phase function 8 is analogous to the dispersion 
relation in Luke's (1966) example, which was obtained with the help of a periodicity 
requirement. Here, however, it  did not appear possible to conclude that Q = constant 

An analytical solution to (27)  can be obtained for airfoil shapes having the form 
directly. 

f(z) = a,x+a,z2, (28) 

for 0 < z < 1 and a, > 0. For a parabolic airfoil at zero incidence aa = -a,; for a 
wedge a, = 0. Since a, > 0 the region of disturbed flow is bounded by a weak shock 
wave from the leading edge. Iff has the quadratic form (28), $&X) = - (a, + 2aa X )  
and 5, is a function only of 7. Then (27)  can be rewritten 

2 8 , 8 ,  = 1, 
where Y, = Batx and 

Equation (29)  has the form g(X ,  Y, 8, ex, 8,) = 0, with = %/a Y = 
a g / M  = 0. If 8 is measured along characteristics, one then obtains 

49,e,. (31) 2 8 ,  = -- 2 8 ,  = -- d 8  
d8 ds ds ds ds 

dY dx o=-- dex - d @ Y  - 

From the fist two parts of (31), 8, and 8, are seen to  be constant along 
characteristics. From the next two parts, and with the requirement of matching with 
(26), it  is also found that Y / X  is constant along characteristics. Finally, combining 
with the last part of (31) shows the solution to be 

e = ( 2 x ~ p .  (32) 

For more general airfoil shapes, a procedure similar to that indicated by (31) can be 
used to replace (27) with a system of ordinary differential equations to be solved 
numerically . 
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FIGURE 1. Domains of validity for different aaymptotic representations. 

With the solution (32) ,  the result (22) for $l becomes 

where A now has been written as a function of X and Y .  The differential equation 
(24) for A is 

[ B 2 - 2 ( y + l ) M 4 a 2  
1 (y + 1) ikM4 Y(al  +a2 

O=XA,+YA,+ 

Integration along the characteristics d Y / d X  = Y / X  gives the solution 

M4 B T [  ( y f l ) M 4 a 2 v ] }  
where [(X, Y )  = ~ ( y + l ) q { a ~ + a ~ X -  Y 1 -  3B2 9 

(34) 

with 7 and Y related by (30) .  The multiplicative integration constant has been chosen 
for agreement with (14). 

The solution for the unsteady perturbation potential 6 is then given by (33) ,  with 
definitions of the variables obtained from (6) ,  (8), (9), (18), (20) ,  (28) and (30) .  The 
cosine factor in (33)  describes variations having large wavenumber, O ( d )  when 
X and Y are 0(1), with constant phase along lines X Y  = constant and constant 
wavenumber along Y / X  = constant. The factor A describes ‘slow’ changes in 
amplitude and phase; the amplitude is constant along P / X  = constant and is 
proportional to Yi’ along the characteristics X = constant of the steady flow. 

An alternate form of solution is required in a region close to the shock wave from 
the leading edge for which y = O(e-4) and f = O(e4). Here the phase function 8 is of 
order one (i.e. X Y  is no longer large), and the displacement of characteristics from 
their linearized positions is again of the same order as the distance from the shock 
wave. The solution satisfies (16) without the right-hand side, rewritten in terms of 
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coordinates B - ~ X  and dy, and matches as d y + O  with the first term in the expansion 
of (13) for y - +  co with [y held fixed. The result is 

Domains of validity of the solutions (13), (33) and (37) are shown schematically in 
figure 1.  

A composite formed from (33) and (37) describes the flow ahead of the region 
influenced by the trailing edge, for X Y  = 0 ( 1 )  as well as X Y  p 1, provided always 
that X < Y :  

The results (33) and (38) include terms which are not present in Kurosaka's (1977) 
solution, since he omitted terms in the potential equation which did not involve k; 
his solution contains other terms which are not required in a first approximation when 
X ,  Y ,  k = O(1). The time-dependent term in the pressure can now be found from (7), 
with @ - -$z. Substituting (38) leads to 

- (B~E,)-' e-ikcV(O) J ,  (39) 

4. Leading-edge shock wave 
The shape of a shock wave from the leading edge can be written in the form 

(40) 
X 

P(z ,  y, t )  = 0 = - -y -zs (y;  s)-S eiktts(y; k ,  6) + . . . . 
For an airfoil with upper surface defined by (28), with a, > 0, an analytical expression 
can be obtained for the first approximation to the steady-state shock-wave position 
E = is. From (8) evaluated at the shock wave, together with the observation that 
in a first approximation a weak shock wave bisects the angle between the charac- 
teristics just upstream and just downstream, it is found that 

B 

(Y + 1 M4a2 E Y ] ~ }  +.... 
f . = l ( - l + [ l -  2Ba, B2 
- 

This expression includes the solution for a wedge, since a straight line with the proper 
slope is recovered in the limit a, + O .  

can be found. The shock-wave speed is c, = -F,/IVPI 
and the normal component of the gas velocity just upstream is q, = P!/lVlil. The 
difference Q,-c, is then the speed at which the shock wave moves into air at 
rest. For a weak shock wave the velocity change Aq, imparted to the gas is 
Aq, = 4(q,-c,- l / M ) / ( y +  1). Carrying out the necessary substitutions, and noting 
that & - - B&, one finds for the largest time-dependent terms 

Next the largest term in 

where JX is evaluated with x = B(y+&). Integration then gives 
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0.6 c 

FIGURE 2. Decay of ecaled uneteady preseure at leading-edge shock wave. 

where X is evaluated at x = B(y + z,). For consistency with the motion of the leading 
edge the integration constant has been chosen, with reference to (5) and (a), such 
that g, = -h(O) at y = 0. The flow for x, y = O(6) is easily shown to be quasi-steady, 
and no special discussion is needed for the first approximation close to the leading 
edge. 

If dy  -+ co, provided that k >> E f ,  the integral in (43) approaches a constant of order 
k-ls-t,  so that 

Thus a t  large distances, such that y >> 6-4, a disturbance travels along the shock wave 
at a speed dy/dt - B / W .  This is the value found for the simpler case of a cylindrical 
wave originating in a disturbance at the leading edge, with its centre convected 
downstream at the flow speed while its radius increases at the sound speed (e.g. 
Kurosaka 1977). The amplitude of the shock-wave oscillation for y P s-t approaches 
a constant value larger than that at the leading edge; while Iz,I grows indefinitely 
m y increases, Slg,] increases from O(S) to O(Sk-le-f). The instantaneous shock-wave 
velocity and slope, however, are related in such a way that the relative velocity q, - c, 
(proportional to the right-hand side of (42)) associated with the terms shown in (44) 
is zero. The amplitude of the unsteady pressure jump should therefore be expected 
to decrease with increasing distance. From the jump conditions, the pressure ps  at 
the shock wave is found asp, = (q, - c,) Aq,. Substitution then gives the same leading 
term in the time-dependent pressure jump S eik(t-M'z/B')rjs as would be found from 
(39) with [replaced by& throughout. Thus#, remains O( 1) for y = O ( d )  but is found 
to be O(&' d y t )  for y >> 6-4. The real part of rj,/ V ( 0 )  aa given by (39) at the shock 
wave is plotted against dy  in figure 2 for 6 = 0.1, a, = 1, us = - 1, k = 1 .O and M = 2.0. 
The factor (Be&)-' decreases rapidly as y increases, and so the amplitude of the 
pressure oscillation is extremely small even at the first minimum of the factor J,. 
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5. Concluding remarks 
By a combined use of multiple scales and matched asymptotic expansions, a 

systematic description has been derived for the disturbances caused by an oscillating 
airfoil in supersonic flow, for reduced frequencies k = O(1). In  a numerical example, 
the oscillatory part of the pressure at a leading-edge shock wave is found to decrease 
fairly rapidly with increasing distance from the edge. 
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